P2 REVISION - CHAPTER 1 - MOTION

P2 REVISION - CHAPTER 2 - FORCES

What is the definition of a force?	Using the formula F=ma, fill in the	table				
		۵	b	с	d	e
	Force (Newtons, N)		200	840		5000
What are balanced forces and when do they occur?	Mass (kilograms, kg)	20		7.0	0.40	
	Acceleration (meters/second squared, m/s²)	0.80	5.0		6.0	0.20
What are unbalanced forces and when do they occur? Calculate the resultant force:	What is stopping distance, and wha distance? What factors affect stopping dist	ance?	two parts t	hat make u	p a car's s'	topping
What is terminal velocity?	What do we do to prevent speeding s law? KEY WOR Force Resultant Stopping d Thinking di Braking di Weigh	in this con RDS: e Gra force istance C istance Terr stance Pro at H	untry? vitation field strength Drag force minal velocit oportionality looke's law	ASSE	ESSMENT	

P2 REVISION - CHAPTER 3 - WORK, ENERGY & MOMENTUM

What is work done?	What is momentum?				
What is the equation for work done?	Complete the question below using this equation				
How does friction affect work done?	momentum (kg m/s) = mass (kg) X velocity (m/s) If a sprinter with a mass of 50kg runs at a velocity of 10m/s what is their momentum?				
What is gravitational potential energy?	A 0.5 kg trolley is pushed at a velocity of 1.2 m/s into a stationary trolley with a mass of 1.5 kg. The two trolleys stick to each other after the impact				
Complete the question below using this equation $E_p \text{-}m \times g \times h$ If a 2kg mass is lifted 0.4 meters how much GPE does it gain?	Calculate: The momentum of the 0.5 kg trolley before the collision The velocity of the two trolleys straight after the impact				
What is kinetic energy?					
Complete the question below using this equation $E_{K} = \frac{1}{2} \times m \times v^{2}$ If a 500kg mass is moving at 12m/s how much kinetic energy does it have?	What is conservation of momentum and how do you calculate it?				
	KEY WORDS: ASSESSMENT:				
What features do we add to cars to make them safe?	Transfer Work done Gravitational potential energy Elastic potential energy				
	Momentum Conservation of momentum				

P2 REVISION - CHAPTER 4 - CURRENT ELECTRICITY

P2 REVISION - CHAPTER 5 - MAINS ELECTRICITY

What is the difference between direct current and alternating current?	What is a fuse and how does it work?
Why do we use alternating current for mains electricity?	What is a circuit breaker and how does it work?
How do we measure alternating current?	
In a standard 3-pin plug what is: X: Y: Z: How do the materials and design of the following plug parts improve their safety? Case	Electrical power and potential differenceElectrical energy and charge Work through these questions: A light bulb transfers 30000J of electrical energy when it is on for 300s. Calculate its power: $P = \frac{E}{t}$ Electrical energy and charge Work through these questions: Calculate the charge flow when the current is 8A for 80s. $Q = I \times t$ Calculate the normal current through a 500W, 230V heater $I = \frac{P}{V}$ Calculate the normal current energy transferred in a component when the charge passing through it is 30C and the potential difference is 20V
Pins How are electrical cables designed to be safe?	KEY WORDS: Direct current Oscilloscope Cable Alternating Y-gate control Three-pin plug current Time base Circuit breaker Frequency control Residual Live/neutral/ Socket current circuit earth wire Plugs breaker (RCCB)

P2 REVISION - CHAPTER 6 - RADIOACTIVITY

What is radiation? Give 3 uses of radioactivity, and a brief description of how they work:							How did each of these scientists contribute to our understanding of radiation? Henri Becquerel:					
What causes background radiation?							Marie Curie:					
								Ernest Ru	therford:			
Describe radioactive dec α emissions:	cay:											
eta emissions:								Properties	s of radiation:			
γ emissions:							J		Penetrating power	Deflection by magnetic field	Deflection by electric field	
								Alpha radiation (α)			
Explain what half-life is	3:							Beta radiation (β)			
Fill in this table assumir	ng there is	a 10% de	cay ever	y hour:				Gamma radiation (γ)			
Time from start (hours)	0	1	2	3	4	5	6		EY WORDS: ASSESSMENT:			
No. of unstable atoms	1000	900					477	Alpha radiation (α)				
No, of unstable atoms that decay in the next hour	100	90					48	Beta radiation (β) Gamma radiation (γ) Atomic number Isotope				
							\supset	Ň	ass number Half-life			

P2 REVISION - CHAPTER 7 - ENERGY FROM THE NUCLEUS

Explain nuclear fission (use diagrams):	What was the early universe like?
	Explain the life cycle of a star:
Explain nuclear fusion (use diagrams):	
	How are chemical elements formed?
What are some of the issues linked with nuclear energy?	$ \leq $
	KEY WORDS: Nuclear fission Main sequence Chain reaction stars Reactor Red giant Control rods White dwarf Coolant Black dwarf Nuclear fusion Supergiant